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The paper reports on an investigation into the nonlinear evolution of a wavetrain ema-
nating from a point source in a flat-plate boundary layer. The work was mainly experi-
mental, but calculations using linear and nonlinear stability theory and parabolized
stability equations were also performed to support the conclusions. The amplitudes
of the disturbances used were very small and, as a consequence, turbulence was not
reached within the experimental domain. Nevertheless, interesting nonlinear behaviour
was observed. The nonlinear regime was characterized by the appearance of a three-
dimensional mean flow distortion in the form of longitudinal streaks. It was possible to
distinguish two different stages of the nonlinear regime. In the first stage, the streak
pattern displayed relatively low spanwise wavenumbers. The pattern appeared to
have grown algebraically from a pair of counter-rotating streamwise vortices. Weakly
nonlinear calculations suggested that the vortices arise from the interaction of the
spanwise and the wall-normal velocity components. The second stage exhibited more
streaks and higher spanwise wavenumbers. This stage was found to be associated with
a peak-and-valley structure of the wave amplitude. A remarkable feature was that
the streamwise position of the onset of the second stage of the nonlinear regime was
not affected by the amplitude of the disturbance. Parabolized stability calculations
suggested that the peak-and-valley structure was the outcome of a secondary instabil-
ity of the fundamental type. An interaction similar to that of the first nonlinear stage
involving the waves composing the peak-and-valley structure yielded other streamwise
vortices and hence a different streak pattern. The results also suggested that, because
the wave amplitudes were very small, the linear stability influenced the nonlinear
evolution. Indeed, the onset of the second stage of the nonlinear regime appeared to
be associated with the proximity of the second branch of the linear stability diagram.

1. Introduction
Work on natural transition can be traced back to the pioneering experiments of

Schubauer & Skramstad (1943). However, prediction of the onset of turbulence in
natural transition is still a challenge. Transition in boundary layers often involves
the amplification of Tollmien–Schlichting waves. When these waves become large,
different nonlinear mechanisms can take place. In the H-type transition, also called N-
type, a secondary instability appears and the growth of subharmonic waves is observed
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Escola de Engenharia de São Carlos – Universidade de São Paulo, Brazil; marcello@sc.usp.br.
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(Herbert 1988; Kachanov 1994). On the other hand, in the K-type transition the se-
condary instability is of the fundamental type (Klebanoff, Tidstrom & Sargent 1962;
Herbert 1988; Kachanov 1994). There is also the oblique transition, which is concerned
with the evolution of a pair of oblique waves (Schmid & Henningson 1992; Berlin,
Lundbladh & Henningson 1994; Elofsson & Alfredsson 1998; Reddy et al. 1998). In
this case, transition is preceded by the formation of streamwise vortices and the appe-
arance of three-dimensional mean flow distortions in the form of longitudinal streaks.

In natural transition, features that are characteristic of these transition scenarios
have been reported. For instance, the formation of longitudinal streaks was observed
in the experiments carried out by Westin et al. (1994) and Boiko et al. (1994). In other
experiments (Shaikh 1997) the process appeared to be dominated by the growth of
subharmonic waves. Experiments have also shown that, just before turbulence sets
in, spikes are observed in natural transition. Spikes are often recognized as a key
ingredient of the K-type transition (Klebanoff et al. 1962).

This state of affairs is not to be considered surprising. In the H-type, K-type and
oblique-type transition, the experimental conditions are tuned to produce a particular
outcome. Indeed, in these experiments, the flow is perturbed with only a limited
number of waves. In uncontrolled conditions, the perturbation is composed of a large
number of modes and certainly all of these nonlinear interactions are possible.

In the current paper, the nonlinear evolution of a wavetrain emanating from a point
source is studied. This is intended as a wave system that is more generic than those
that lead directly to the transition routes described above, but still far less complicated
than natural transition. This simpler model might provide an important step towards
the understanding of natural transition. There the waves are three-dimensional and
modulated, here only three-dimensionality is included.

This type of wavetrain has been studied elsewhere (Mack 1985; Kachanov et al.
1985; Seifert 1990; Seifert & Wygnanski 1991; Wiegand et al. 1995). However, these
studies were restricted to the linear regime. A numerical simulation of the nonlinear
regime of such a wavetrain has also been reported (Stemmer, Kloker & Wagner
1998). There, the nonlinear regime was found to involve the generation of streamwise
vortices and the associated longitudinal streaks. The outcome was attributed to a
mechanism of oblique transition.

The results shown here confirm that longitudinal streaks play an important role in
the nonlinear evolution of the wavetrain emanating from a point source. It was also
found that the process could be split into two stages. In the first stage, the generation
of streaks was driven by a weakly nonlinear interaction that was in many ways similar
to that observed in oblique transition. However, because it involved a large number
of waves, it could display some different features.

The second stage was found to be governed by secondary instability of the funda-
mental type. The results also suggested that the second branch of the stability loop
played an important role in generating the seeds for the resonating three-dimensional
modes. The study is mainly based on wind-tunnel experiments, but theoretical explana-
tions using linear stability calculations, weakly nonlinear analysis and simulations via
the parabolized stability equations are also given to support the conclusions.

2. Brief description of the experimental procedures
The experiments to be reported here were carried out in a low-turbulence wind-

tunnel at the Cambridge University Engineering Department.† The boundary layer

† This tunnel is now located at the Queen Mary & Westfield College of the University of London.
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developed on a 1.68 m long aluminium flat plate. The free-stream velocity was
17.3 m s−1. The free-stream turbulence level was 0.008%, in the spectral range of
1 Hz to 5 kHz. A small loudspeaker was buried in the plate and connected to the
flow through a 0.3 mm diameter hole at 203 mm from the leading edge of the plate.
The loudspeaker that produced the perturbations was controlled by a computer. The
streamwise velocity was measured with a constant temperature hot-wire anemometer.
Further details of the experimental facility and the mean flow characteristics can be
found in Medeiros & Gaster (1999a).

The study was aimed at investigating the implications of three-dimensionality to
natural transition. Therefore, it was decided that the magnitude of the perturbations
should be similar to those that cause turbulence in natural transition. It has been
shown that the highly modulated and three-dimensional waves that occur naturally
lead to transition at very low amplitudes (Gaster 1978; Shaikh 1997; Medeiros &
Gaster 1999a, b). The excitation amplitudes used here were based on experiments with
wavepackets carried out by Medeiros & Gaster (1999a). The small amplitudes used
meant that turbulence was not reached within the experimental domain.

Figure 1 shows the evolution of the wavetrain along the centreline of the plate
at 0.6δ∗ from the wall, where δ∗ is the displacement thickness. In the figure, a scale
indicates the amplitude of the oscillations. The wavetrain used was not actually
continuous, but it was so long that its central part behaved like a continuous one.
The idea was to treat the wavetrain as an event and use phase-averaging techniques
to improve the signal to noise ratio. The data acquisition system was phase-locked to
the excitation. The velocity records shown in the paper are the result of the ensemble
average of 64 events. As shown in § 3, the standard deviation of the single realizations
from the ensemble-averaged records was bellow 2% of the peak-to-peak amplitude
of the perturbation velocity.

In the nonlinear regime, the signal displays a mean flow distortion. Because the
disturbance velocity was so small, the 12-bit buffer did not have enough resolution to
capture both the base and the disturbance velocity. Using an analogue filter to remove
the direct current was considered inadequate because it would almost certainly affect
the measurement of the mean flow distortion. In order to reduce the direct current
level, a device was used to subtract a constant voltage from the total signal. This was
later added to the voltage samples prior to their transformation into velocity records.

Care was taken that the ramps at the ends of the wavetrain were so gentle that
streamwise-modulation effects became unimportant. It was also verified that the
length of the wavetrain did not affect the results. Figure 2 shows the evolution of a
wavetrain with longer end ramps and a shorter amplitude-constant central part. It is
seen that the evolution was not sensitive to these effects.

3. Experimental observations
From figure 1, it appears that the nonlinear regime begins at about 700 mm from

the leading edge of the plate. Initially, the mean flow distortion is negative, but further
downstream it becomes positive. For comparison, figure 3 gives the evolution of the
wave in the linear stability diagram for two-dimensional waves. At x = 900 mm, the
waves have already crossed the second branch of the stability loop. Indeed in that
region, along the centreline, the oscillations decay (figure 1). It is possible that the
attenuation is linked to the linear stability. In spite of that, the nonlinear activity is
still significant, as indicated by the large mean flow distortions attained at 1000 mm
and 1100 mm from the leading edge.
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Figure 1. Streamwise evolution of the wavetrain along the centreline of the plate at 0.6δ∗

from the wall. The amplitude of the wave is given by the scale shown with the record at
x = 500mm.

Figure 4 displays the wavetrain evolution along the centreline in Fourier space.
It represents the spectra of the ensemble-averaged signals. The oscillating part
corresponds to a frequency of 200 Hz. The picture also shows that no significant
signs of either subharmonic or harmonic oscillations are seen throughout the
wave evolution. Definitely, the nonlinear behaviour is dominated by the mean flow
distortion, represented by the very low-frequency signal.

Streamwise velocity records were also taken off the centreline of the plate. The
results are shown for different streamwise distances in figure 5. The horizontal
coordinate is the time. The frames cover periods of 0.156 s starting at different instants
t0. The vertical coordinate of each frame is the spanwise direction and covers up to
30 cm centred on the centreline of the plate. In the linear regime, the lines of constant
phase form crescents. As the wave progresses, they span a larger portion of the flow
field. In the nonlinear regime, the crescents look increasingly distorted. Despite many
attempts, the reason for the asymmetrical behaviour close to the disturbance source
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Figure 2. Streamwise evolution of a wavetrain with gentler ramps and a shorter central part
as compared to that of figure 1.

could not be found. However, since this is much less marked further downstream,
it was considered that this would not significantly affect the results in the nonlinear
regime.

Despite the apparently strong nonlinear activity, turbulence was not reached within
the experimental domain. In fact, the standard deviation of the original single
realizations from the ensemble-averaged records remained very small throughout
the evolution (figure 6). Note that here the axes are changed with respect to those
of figure 5. The top left-hand corners of the frames of figure 5 correspond to the
bottom right-hand corners in figure 7. However, the frames cover identical time × span
domains. This facilitates the comparison between the different streamwise stations.
The boundary-layer response to the excitation was very repeatable.

A clearer view of the nonlinear mean flow distortion is obtained if the oscillating
part of the signal is digitally filtered out. Based on figure 4, it was considered that the
mean flow distortion was contained within the components equal to and below 15 Hz.
This was the cutoff frequency selected for the filter. In figures 1 and 2, the filtered
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Figure 3. Evolution of the dominant two-dimensional wave in the stability loop, shown by
the solid straight line. The dashed lines indicate the first and the last streamwise measuring
stations. The dashed-dotted line marks the excitation source.
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Figure 4. Streamwise evolution of the wavetrain at 0.6δ∗ from the wall along the centreline
in Fourier space.

signals are also given and clearly indicate the mean flow distortions of the velocity
field. Figure 7 presents the spanwise distribution of the mean flow distortion. Again,
the frames are changed with respect to those of figure 5.
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Figure 5. Streamwise evolution of the wavetrain at 0.6δ∗ from the wall shown by span × time
planes. Note that each frame starts at a different t0. The grey scale gives the velocity magnitude
relative to the free-stream velocity. At each measuring station, the spanwise domain was
restricted to the extent of the wavetrain.

Initially, no mean flow distortion is observed, since the wave system behaves
linearly. At x = 800 mm, it can be seen that the mean flow distortion is, in fact,
three-dimensional. The picture is not very symmetrical, but shows a negative central
streak and one positive at each side of the centreline.

Longitudinal streaks are observed in many transitional or turbulent flows and
are almost always related to the existence of longitudinal vorticity. It is known
that, in a boundary layer, the velocity field associated with this vorticity promotes
a redistribution of longitudinal momentum (Henningson, Lundbladh & Johansson
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Figure 6. The standard deviation of the original single realizations from the ensemble-
averaged time histories at y =0.6δ∗. Note that the frames are changed with respect to figure 5.
The grey scale gives the magnitude relative to the free-stream velocity.

1993). At some places, low-momentum fluid is lifted away from the wall whereas at
other places high-momentum fluid is moved closer to the wall. This is often referred
to as the lift-up mechanism. The phenomenon promotes the transient or algebraic
growth of the longitudinal streaks (Berlin et al. 1994; Elofsson & Alfredsson 1998)
and produces the characteristic pattern. This is a key feature of the route to turbulence
called oblique transition (Reddy et al. 1998). The numerical simulations reported by
Stemmer et al. (1998) have also shown that in the wavetrain emanating from a
point source, the appearance of the streaks was a result of streamwise vorticity. In
the current investigation, the streamwise vorticity was not measured. However, from
x = 700 mm to x = 900 mm the results were consistent with these ideas. The streaks
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Figure 7. Streamwise evolution of the three-dimensional mean flow distortion at 0.6δ∗ from
the wall shown by span × time planes. The grey scale gives the velocity magnitude relative to
the free-stream velocity.

were therefore considered evidence of the existence of two regions of longitudinal
vorticity of opposite sign.

At x = 1000 mm, a positive streak arises at the centre and splits the negative streak
into two. This corresponds to the change of sign observed on the centreline evolution
(figure 1). The newly created streak becomes wider at x = 1100 mm. Although the
picture is not symmetric, the results tend to suggest that other streaks appear,
particularly at the edges of the wave-system.

The evolution of the streaks in Fourier space is shown in figure 8. At station
x = 700 mm, the first indication of the streaks is a mode of low spanwise wavenumber,
centred at about β = ±0.07. Further downstream, x = 1000 mm and 1100 mm, the
spectra is dominated by higher spanwise wavenumbers.
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The grey scale indicates the relative power. The symbols indicate theoretical predictions.
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Figure 9. Variation of the displacement thinckess associated with the mean flow distortion,
non-dimensionalized by the local theoretical displacement thickness.

Measurements at 23 other wall-normal positions were also carried out, covering
a region from y/δ∗ = 0.3 to y/δ∗ = 7.2. This enabled the examinations of the mean
flow distortion profiles. The procedure for extracting the distortion was to divide the
velocity records in three equal parts and average the central part. This ensured that
only the central amplitude-constant part of the wavetrain was considered. The shape
of the distortion, not shown here, resembled that of a Klebanoff mode, with a peak
inside the boundary layer. However, it appeared that the results were too noisy for a
definitive conclusion to be reached.

Integrating the mean flow distortion in the wall-normal direction provided the
spanwise variation of the displacement thickness associated with the streaks (figure 9).
The displacement thickness variation was very small, bellow 1%. Nevertheless, it
displayed a definite pattern, consistent with figure 7.

A look at the oscillating part of the signal shows other important aspects of
the nonlinear regime (figure 10). This was produced by removing, from the velocity
time series, the components below 15 Hz. Up to x = 900 mm, the picture displays
the characteristic crescent shape with a central amplitude peak. At x = 1000 mm and
x = 1100 mm two peaks emerge, one on each side of the centreline of the wavetrain.
As is shown in § 4, this was also an outcome of nonlinear activity. The waves display
significant attenuation from stations x = 1000 mm to x = 1100 mm. It appeared that
the nonlinear activity was not sufficient to sustain the growth of the wavetrain very
far beyond the second branch of the stability loop, which here is close to x = 900 mm
(Reδ∗ = 1760) (see figure 3).

In summary, it may be said that the current experiments confirmed previous findings
in that the longitudinal streaks play an important role in the nonlinear evolution of
this wavetrain. It also appeared that the nonlinear regime here reported could be
thought of as a two-stage process. In the first stage, namely x = 700 mm to x = 900 mm,
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Figure 10. Evolution of the oscillating part of the three-dimensional wavetrain at 0.6δ∗ from
the wall, showing the formation of the peak-and-valley structure of the streamwise velocity.
The grey scale gives the velocity magnitude relative to the free-stream velocity.

the structure of the mean flow distortion was relatively simple: one negative central
streak and a pair of positive streaks, one on each side of the centreline. In the second
stage, x = 1000 mm to x = 1100 mm, other streaks appeared and the characteristic
spanwise wavenumber increased. Also at this stage, two off-the-centreline peaks of
the oscillation amplitude emerged and a valley was formed along the centreline.
Hereinafter, this will be called the peak-and-valley structure and refers only to the
oscillating part of the signal, as opposed to the streak structure, which describes the
three-dimensional mean flow distortion and is associated with longitudinal vorticity.

The first stage was indeed similar to that reported by Stemmer et al. (1998), and
resembled oblique transition. However, the features related to the second stage have
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not been observed in either the direct numerical simulations of Stemmer et al. (1998)
or the various oblique transition studies. First of all, in these studies, the spanwise
wavenumber of the streak structure remained constant almost until breakdown
into turbulence. Moreover, no peak-and-valley structure that could be attributed
to nonlinear mechanisms has been reported. These remarkable differences were here
subjected to a more detailed investigation.

It is important to emphasize that the experiment reported here involved waves of
very small amplitude, about ten times smaller than those used by Stemmer et al. (1998)
and those generally used in oblique transition investigations. As has already been
anticipated, this was done because the oscillations that occur in natural transition
can be very small. This important aspect may be linked to the observed differences
between the current investigation and other similar studies.

4. Physical model for the first stage of the nonlinear regime
In a nonlinear analysis, it is often interesting to investigate the Reynolds stresses

that are neglected in the linear theory. The following derivation was inspired by that
given by other studies (Benney 1961; Antar & Collins 1975; Nelson & Craik 1977)
which should be used for further details. The main difference is that here a spatial
evolution was considered. The flow field is expanded in a perturbation series whose
small parameter, a, is a measure of the amplitude of the wave system:

v = v0 + av1 + a2v2 + . . . ,

p = p0 + ap1 + a2p2 + . . . ,

}
(1)

where v is the velocity vector with components (u, v, w) and p is the pressure. The
base flow is represented by v0 and is considered parallel:

v0 = (u0(y), 0, 0). (2)

The order a flow is the wavetrain. If ω is the non-dimensional frequency of the
excitation, v1 takes the form:

v1 = ṽ1(x, y, z)eiωt + ṽ∗
1(x, y, z)e−iωt ,

p1 = p̃1(x, y, z)eiωt + p̃∗
1(x, y, z)e−iωt ,

}
(3)

where the asterisk denotes complex conjugate.
Substituting (1), (2) and (3) into the equations of motion for an incompressible flow

and collecting terms of order a yields:

iωũ1 + u0

∂ũ1

∂x
+ ṽ1

∂u0

∂y
= −∂p̃1

∂x
+

1

Rδ∗
∇2ũ1,

iωṽ1 + u0

∂ṽ1

∂x
= −∂p̃1

∂y
+

1

Rδ∗
∇2ṽ1,

iωw̃1 + u0

∂w̃1

∂x
= −∂p̃1

∂z
+

1

Rδ∗
∇2w̃1,

∂ũ1

∂x
+

∂ṽ1

∂y
+

∂w̃1

∂z
= 0.




(4)

In the equations, x, y and z represent, respectively, the streamwise, wall-normal
and spanwise directions. The velocity components u, v and w also correspond to
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the streamwise, wall-normal and spanwise directions, respectively. The variables are
non-dimensional. The length scale is the boundary-layer displacement thickness δ∗.
The velocity scale is U∞ and the time scale is δ∗/U∞. Rδ∗ is the Reynolds number
based on the displacement thickness and ∇2 is the Laplacian operator. Equations (4),
with homogeneous boundary conditions, govern the linear evolution of the wavetrain
and there are standard techniques for solving them (Mack 1984).

Using these techniques, the linear evolution of the wavetrain was computed
considering a locally parallel flow. It was considered that the point source excited a flat
spanwise wavenumber spectrum. This is, of course, only an approximation. First of all,
it is not entirely clear that the excitation worked like an ideal point source. Moreover,
we should consider the receptivity process, which is known to favour higher spanwise
wavenumbers (Bake et al. 2002). However, this assumption was shown to produce
very accurate results (Gaster & Grant 1975; Gaster 1975; Mack 1984, 1985). For
finding a suitable amplitude, the theoretical results were matched to the experiments
at x = 700 mm.

Results for the streamwise velocity component are given in figure 11. At x = 400 mm
and x = 500 mm, the wavetrain displays amplitude peaks off the centerline. Also at
x = 400 mm, close to the centreline, the wave system has a peculiar phase variation.
Both these features have been observed in the calculations by Mack (1984, 1985).
They were not detected in the experiment (figure 5), but this is probably due to poor
experimental resolution and other experimental imperfections.

From x =600 mm to 800 mm, agreement between experiment and theory was good,
in particular when the filtered signals of figure 10 are considered. At x =1000 mm and
x = 1100 mm, the linear wavetrain displays an amplitude peak along the centreline,
while the experiments clearly showed amplitude peaks off the centreline of the
wavetrain. This difference was also attributed to nonlinear effects.

Figure 12 shows the linear evolution of the spanwise spectra for the three velocity
components. For comparison, experimental results for the oscillating part of the
streamwise velocity component are also shown. They are given as symbols connected
by a solid line, and are restricted to the linear and early nonlinear stages. In the
figure, the asymmetry of the experimental results appears more clearly. However,
on the right-hand side of stations x = 600 mm and x = 700 mm, the agreement may
be considered very good. The theoretical results show that, initially, the streamwise
velocity is dominated by three-dimensional modes, but beyond x = 900 mm, the two-
dimensional mode is the largest. The same is true of the wall-normal component,
but the two-dimensional mode becomes the largest much earlier. Obviously, the
spanwise velocity component is always dominated by three-dimensional modes, but
the spanwise wavenumber changes significantly along the evolution. The results
presented referred to the position y =0.6δ∗, but indicate the situation throughout the
boundary layer.

As explained by Benney (1961), the v2 flow includes a mean flow distortion and
a harmonic oscillation. It is the mean flow distortion that appears to be related to
the experimental observations. The equations for the secondary mean flow distortion
are:

u0

∂ũ2

∂x
+ṽ2

∂u0

∂y
+

∂p̃2

∂x
− 1

R
∇2ũ2 = −2

∂

∂x
(ũ1ũ

∗
1) − ∂

∂y
(ũ1ṽ

∗
1 + ũ∗

1ṽ1) − ∂

∂z
(ũ1w̃

∗
1 + ũ∗

1w̃1),

(5a)

u0

∂ṽ2

∂x
+

∂p̃2

∂y
− 1

R
∇2ṽ2 = − ∂

∂x
(ṽ1ũ

∗
1 + ṽ∗

1 ũ1) − 2
∂

∂y
(ṽ1ṽ

∗
1) − ∂

∂z
(ṽ1w̃

∗
1 + ṽ∗

1w̃1), (5b)
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Figure 11. Linear stability theory results. Evolution of the streamwise velocity component at
0.6δ∗ from the wall shown by span × time planes. The grey scale gives the velocity magnitude
relative to the free-stream velocity.
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∂ṽ2

∂y
+

∂w̃2

∂z
= 0. (5d)

It is also interesting to consider the equation for the second-order streamwise
vorticity

ξ2 =
∂w2

∂y
− ∂v2

∂z
, (6)



302 M. A. F. Medeiros

0.10 0.2 0.3 0.4 0.5 0.6
400

500

600

700

800

900

1000

1100

0.2

0.4

0.6

0.8

1.0

D
istance from

 leading edge (m
m

)

β

R
el

at
iv

e 
po

w
er

0.10 0.2 0.3 0.4 0.5 0.6
400

500

600

700

800

900

1000

1100

0.2

0.4

0.6

0.8

1.0

D
istance from

 leading edge (m
m

)

β

R
el

at
iv

e 
po

w
er

–0.6 –0.4 –0.2 0 0.2 0.4 0.6
400

500

600

700

800

900

1000

1100

0

0.5

1.0

1.5

D
istance from

 leading edge (m
m

)

β

R
el

at
iv

e 
po

w
er

(a)

(b) (c)

Figure 12. Evolution of the spanwise spectra of the three velocity components at 0.6δ∗ from
the wall. (a) Streamwise, (b) Wall-normal and (c) spanwise component. The solid lines give
the results from linear stability theory. For comparison, the symbols connected by a solid line
give the experimental results for the oscillating part of streamwise velocity component.
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Figure 13. The curly bracketed non-homogeneous terms of equation (7) at x = 800 mm.
(a) First term; (b) second term; (c) third term; (d) fourth term; The grey scale indicates the
magnitude of the non-dimensional nonhomogeneous terms.
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This is a restricted version of an equation given by Elofsson & Alfredsson (1998).
Equation (5) admits solutions similar to those of (4), but must also include a

particular solution due to the non-homogeneous terms. These forcing terms can be
explicitly calculated from the v1 obtained using linear stability solutions.

It is perhaps more meaningful to analyse the forcing terms of (7) separately.
Figure 13 shows contour plots of the four non-homogeneous terms in the curly
brackets of (7). The calculations were carried out for x = 800 mm, where the waves
attained a maximum. The second non-homogeneous term in the curly brackets is
about a hundred times larger than the sum of the others, and clearly gives the
dominant contribution. The non-homogeneous terms outside the curly brackets are
not shown as they also were found to be negligible. The dominant character of the
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Figure 14. Streamwise evolution of the dominant non-homogeneous term of equation (7).
(a) x = 700mm; (b) x = 900 mm; (c) x = 1000mm. The grey scale indicates the magnitude of
the non-dimensional non-homogeneous terms.

term −(∂2/∂y2)(ṽ1w̃
∗
1 + ṽ∗

1w̃1) is not surprising since both the experiment, figure 5, and
the linear theory, figure 11, suggest that the gradients in the x- and z-directions are
much smaller than those in the y-direction.

Using the arguments put forward by, for example, Benney (1961); Antar & Collins
(1975) and Elofsson & Alfredsson (1998) it is clear that, owing to its symmetrical
character, the dominant forcing would tend to generate two vortices of opposite sign,
one on each side of the centreline. This would in turn, via transient growth, create the
streak pattern observed at stations from x = 700 mm to x = 900 mm. The argument is
consistent with the experimental observations.

Figure 14 gives the dominant forcing term at other stations, while figure 15 shows
the evolution of its spanwise spectrum. In spite of the variation in both v and w,
the forcing remains remarkably constant in shape and spectrum along the evolu-
tion. The spanwise wavenumber of the streaks should be that of the streamwise
vortices. The distribution has peaks at about β = ±0.07 which is in good agreement
with the experimental result (figure 8).

The model presented was in a way similar to that describing the nonlinear regime
of oblique transition, and supports the conclusions reached by Stemmer et al. (1998).
However, the oblique transition that has been presented in the literature (Schmid &
Henningson 1992; Berlin et al. 1994; Elofsson & Alfredsson 1998) involves the
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Figure 15. Streamwise evolution of the dominant non-homogeneous term of equation (7) in
Fourier space. (a) x = 700 mm; (b) x = 800 mm; (c) x = 900mm; (d) x = 1000 mm. The grey
scale indicates relative power.

interaction of only a pair of oblique waves. Here, the interaction involves a
large number of waves, including a relatively large two-dimensional wave for the
v component (figure 12). The interacting waves do not have an identical phase speed,
and therefore the mechanism can display dispersive features. If the modes composing
v and w were sufficiently concentrated and different in spanwise wavenumber, the
forcing could in fact, exhibit beating. This would be associated with a change in
the sign of the forcing as it evolves in the streamwise direction. Figures 14 and 15
show that, in the current experiment, such dispersive effects were not relevant at least
up to x =1000 mm, where the forcing is already very weak. It should, however, be
emphasized that under other circumstances, say, other Reynolds number or pressure
gradient, these effects may become important. Because of these important differences,
it is perhaps not appropriate to use the term oblique transition to describe the current
phenomenon.

5. Search for a physical model for the second stage of the nonlinear regime
5.1. Weakly nonlinear models

At x =1000 mm, the experiments showed a more complicated spanwise structure of
the streaks. At the centre, the structure is consistent with the existence of two pairs of
counter-rotating streamwise vortices. In fact, figure 13 shows that the second largest
forcing term in (7) would tend to generate two pairs of counter-rotating streamwise
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Figure 16. The second dominant non-homogeneous term of equation (7) at station
x = 1000mm. The grey scale indicates the magnitude of the non-dimensional non-homogeneous
terms.

vortices, one pair at each side of the centreline. This non-homogeneous term arose
from the w1−w1 interaction. It appeared that this interaction should be further
investigated.

Figure 16 shows the distribution of this forcing term at x = 1000 mm. The smaller
magnitude of this forcing term as compared to that associated with the first nonlinear
stage, figure 14, was consistent with the fact that this stage started further downstream.
On the other hand, it was not consistent with the experimental observation that the
streaks of the second nonlinear stage became dominant at x =1000 mm and 1100 mm.

Figure 17 gives the spectral distribution. The dominant spanwise wavenumber of the
forcing term is about β = 0.1. Clearly, it was not in agreement with the experimental
values of 0.2, 0.3 and 0.4.

Yet another argument could be raised to confirm that this forcing term could not be
held responsible for the second stage of the nonlinear regime. In studying nonlinear
regimes, it is sometimes helpful to check the amplitude scaling of the nonlinear
phenomenon. This scaling can be obtained from experiments along the centreline
of the plate. An experiment was then carried out with this purpose. Five different
amplitude levels were tested. The length of the wavetrain was identical to that of
figure 1, as were the free-stream velocity and other relevant parameters. To extract
the mean flow distortion along the centreline of the wavetrain, the procedure was
identical to that adopted in producing figure 9, namely, to divide the velocity records
into three equal parts and average the central part.

For the streamwise stations from x = 700 mm to 1100 mm, the amplitude of the mean
flow distortion was plotted against the square of the amplitude of the fundamental
wave at x = 600 mm (figure 18). At stations x = 700 mm to x = 900 mm, the distortion
is negative. The largest absolute value is found at x = 800 mm. For x = 1000 mm and
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Figure 18. The scaling of the mean flow distortion relative to the wave amplitude. The
symbols ×, �, +, ∗ and � correspond to stations from 700 mm to 1100 mm, respectively.
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Figure 19. The scaling of the mean flow distortion relative to the wave amplitude. Symbols
as for figure 18.

x = 1100 mm, the distortion is positive. In the figure, five straight lines are also given
that cross the origin and the mean value of each set of experimental results. The
agreement in the first stage of the nonlinear regime is very good, offering further
confirmation of the conclusions reached in the previous section. However, for the
second stage of the nonlinear regime, namely, stations x = 1000 mm and 1100 mm, the
mean flow distortion clearly scales to a higher than second power of the amplitude.
The result lent further support to the conclusion that this stage was not associated
with the w1−w1 interaction.

Figure 19 gives the mean flow distortion along the centreline against the third power
of the wave amplitude. The agreement in the second nonlinear stage, x = 1000 mm
and 1100 mm, is good. The analysis is consistent considering that at these stations the
a2 effect of the first nonlinear stage is relatively small, as indicated by figure 8.

The result pointed to the possibility that the phenomenon was linked to a higher-
order nonlinear correction. It is known that such corrections are proportional to
increasing powers of the fundamental wave amplitude (Stuart 1960). Therefore, this
possibility was also investigated.

From figure 8, it can be seen that the energy of the modes in the second stage
of the nonlinear regime is larger than that of the first stage. If a is small, the a3

correction would have to be smaller than an a2 one. This was not consistent with the
experiments. Moreover, in such a model, the higher correction would have to be a
harmonic of the lower ones. In the current experiment, the argument would lead to
a wavenumber of 0.14. This also was not in agreement with the experimental results
(figure 8) which exhibited wavenumbers of 0.2, 0.3 and 0.4.



Nonlinear evolution of a wavetrain 309

400 500 600 700 800 900 1000 1100
–2

–1

0

1

2

3

4

5

6
(× 10–3)

Distance from leading edge

M
ag

ni
tu

de
 o

f 
m

ea
n 

fl
ow

 d
is

to
rt

io
n

Figure 20. Centreline evolution of the mean distortion for different wave amplitudes.

Yet, a perhaps stronger argument could be raised. Figure 20 presents, in a different
way, the same data as used in figures 18 and 19. Here, the downstream evolution of
the mean flow distortion along the centreline for different wave amplitudes is shown.
In a weakly nonlinear framework, the importance of higher-order effects depends on
the wave amplitude. As the wave amplitude is increased, the higher-order effects have
to move closer to the excitation source. Figure 20 clearly shows that the distortion
reaches a saturation at x =800 mm, regardless of the wave amplitude. Based on these
arguments, it was concluded that this model also could not be associated with the
experimental observations.

In fact, if the second stage of the nonlinear regime here reported was a consequence
of a higher-order weakly nonlinear interaction, it should have also appeared in the
numerical simulation reported by Stemmer et al. (1998), which involved higher wave
amplitudes. They would probably also have been observed in some of the many
investigations of oblique transition.

5.2. A secondary instability model

Another shortcoming of the weakly nonlinear models described above in connection
with the second nonlinear stage was that neither of them had anything to say about
the nonlinear peak-and-valley structure of the oscillating part of the signal, which also
appeared in this stage (figure 10). It then seemed appropriate to verify whether this
structure was in some way linked to the streak structure of the mean flow distortion.

Further insight into the simultaneous evolution of the peak-and-valley structure
and the mean flow distortion could be gained by comparing the signals in Fourier
space. Figure 21 shows the spanwise spectra of both the oscillating and the mean
parts of the signal. For comparison, predictions from linear stability theory are also
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Figure 21. Spanwise spectra for stations (a) x = 800mm, (b) 900mm, (c) 1000mm and
(d) 1100mm. The oscillating signal is given by the solid line at the back and compared to
predictions from linear stability theory (dotted lines). The mean flow distortion is represented
by the line at the front.

given as dotted lines. At x = 800 mm, the spectral distribution of the oscillating part
of the signal is relatively smooth. It is not very symmetrical and is also noisy, but these
were attributed to experimental imperfections. At this station, the three-dimensional
mean flow distortion displays essentially the two peaks, β = ±0.07, investigated in § 4.
At x = 900 mm and beyond, both the oscillating part and the mean flow distortion
developed other spectral peaks.

The peak-and-valley structure and the selective growth of three-dimensional waves
of the fundamental frequency pointed to a secondary instability of the Klebanoff
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Figure 22. Results from PSE calculations. The downstream evolution of the
three-dimensional modes under fundamental resonance.

type, whereby three-dimensional waves are amplified by fundamental resonance. In
this instability, while the peak-and-valley structure is formed, a streak structure also
develops. The mechanism of formation of this three-dimensional mean flow distortion
was described by Benney (1961). It involves the nonlinear generation of longitudinal
vortices and transient growth of streaks.

To check the argument, a number of parabolized stability equation (PSE)
simulations were carried out. Each time, the boundary layer was excited with only a
pair of three-dimensional waves and a two-dimensional wave of identical frequency.
The amplitude of the two-dimensional wave was matched to the amplitude of the
wavetrain at x = 800 mm on the centreline. Three-dimensional modes were excited
at an amplitude of 10−6 relative to the free-stream velocity. The different spanwise
wavenumbers used covered the range 0 to 0.6 at the inflow boundary condition of
the simulations, namely, Rδ∗ = 1500.

Figure 22 displays the downstream evolution of the three-dimensional modes
under fundamental resonance as obtained from the PSE computations. It is not
the simultaneous evolution of all three-dimensional modes composing the wavetrain.
It is the evolution of a number of pairs of three-dimensional waves subjected to
fundamental resonance, each pair simulated separately, but the results collected
together in one picture. Figure 23 shows the evolution of the mean flow distortion
arising from the Reynolds stress interaction between the two-dimensional and the
three-dimensional resonating waves. Clearly the mechanism provides a means for the
selective amplification of waves and formation of streaks with spanwise wavenumbers
around 0.2, 0.3, 0.4 and 0.7. Wavenumbers from 0.2 to 0.4 are in good agreement
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Figure 23. Results from PSE calculations. The downstream evolution of the
three-dimensional mean flow distortion associated with the fundamental resonance.

with the experimental results. The wavenumber 0.7 is above the experimental spectral
domain. Note that the amplitude of the mean flow distortion is significantly larger
than that of the three-dimensional waves. This is also the case in the experiment and
might explain the fact that the spectra for the streak structure are clearer than those
of the peak-and-valley structure.

If the two-dimensional wave is large enough, the Klebanoff instability can lead
to a self-sustained nonlinear growth of the waves, otherwise they eventually decay
(Herbert 1988). Indeed, the results show that the oscillations are larger than the
linear stability predictions. However, it appears that here the nonlinear activity was
not strong enough to sustain the growth under the influence of the stabilizing effects
of the linear stability. This is plausible considering that the fundamental waves of the
current experiment have very small amplitude, well bellow the amplitudes that lead
to turbulence under Klebanoff-type instability (Kachanov 1994).

In the simulations, the nonlinear activity was stronger than in the experiment
and sustained the growth of the waves throughout the computational domain.
However, it should be recalled that the amplitude of the two-dimensional wave
of the PSE calculations was matched to the amplitude of the experimental wavetrain
at station x = 800 mm on the centreline. Since, in the experiment, the wavetrain is
three-dimensional, it is likely that the effective two-dimensional wave driving the
resonance was considerably smaller than that used in the simulations. Moreover,
the growth rate of the fundamental two-dimensional wave is larger than that of the
three-dimensional wavetrain emanating from the point source. Also, the amplitude of
the seeds for the resonating three-dimensional modes probably did not match those
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of the experiment. Apparently, there is no easy way of obtaining both the effective
amplitude of the driving two-dimensional wave and of the three-dimensional seeds,
and this was not attempted here. In fact, the interest did not lie in reproducing
the amplitudes accurately, but in finding the most unstable three-dimensional waves.
Indeed, the most unstable wavenumbers of the secondary instability were in close
agreement with the experimental results. This was considered to be strong evidence
that the peak-and-valley structure was linked to the mean flow distortion and that
the second nonlinear stage was the outcome of a Klebanoff-type instability.

The secondary instability is strongly dependent on the amplitude of the two-
dimensional driving wave. In an experiment, increasing the amplitude of the two-
dimensional wave usually moves upstream the onset of secondary instability. The
current experiments showed the remarkable feature that the onset of the secondary
instability was not dependent on the amplitude of the driving wave. However, it must
be recalled that the seeds of the three-dimensional waves also play a role in triggering
the secondary instability, and it was decided to investigate the origin of these seeds.

The seeds of the three-dimensional resonating modes may come from the
background non-deterministic noise. However, the repeatability of the experiment,
shown by the standard deviation in figure 6, made it clear that the seeds had to
be deterministic. Indeed the point-source excitation contained modes of the correct
frequency for the resonance to develop. However, the streamwise velocity component
of the three-dimensional waves excited at the source had a peak at the centreline
z = 0. They would have to produce a peak-and-valley structure with a peak at z = 0,
not a valley, as observed in the experiment.

The explanation that was eventually found was also inspired by Klebanoff’s
experiment (Klebanoff et al. 1962). In that experiment, the three-dimensionality was
artificially introduced by the placement of spacers under the vibrating ribbon. The
appearance of three-dimensionality in the nominally two-dimensional wavetrain was
attributed to spanwise modulation of the linear amplification owing to spanwise
variation of the Reynolds number based on the displacement thickness. The argument
was that the spacers produced small defects in the boundary-layer profile which yielded
a variation across the span of the displacement thicknesses. At the spacer positions,
larger displacement thicknesses were produced and hence higher Reynolds number.
As a consequence, close to the first branch, larger amplification rates were expected
at the spacer positions, and accordingly peaks should develop. On the other hand,
close to the second branch, valleys should appear at the spacer locations. In that
experiment, the spanwise variation of the displacement thickness was not measured,
as it was estimated to be below the experimental uncertainty of 1%. Nevertheless,
the argument was confirmed by the experimental results which showed the expected
phase shift. This is clearly displayed in figure 13 of Klebanoff et al. (1962).

In the current experiment, there were no spacers. However, at x = 800 mm, there
was spanwise variation of displacement thickness. The variation was very small,
but, as shown by Klebanoff, they need not be large. The three-dimensionality thus
generated could provide the seeds for the subsequent fundamental resonance. The
three-dimensional seeds also need not be large. In the simulations that produced
figures 22 and 23, the amplitude of the three-dimensional seeds were about 10−6

relative to the free-stream velocity, and under the resonant interaction, reached
amplitudes comparable to those of the fundamental two-dimensional wave. In
the current experiment, because of the proximity to the second branch, higher
amplification rates would be expected where the displacement thickness variation
was negative, and lower where positive. The variation of displacement thickness
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shown in figure 9 is consistent with the appearance of an amplitude valley at the
centreline, figure 10.

This physical model also offered an explanation for the location of the onset of
the secondary instability at about x = 800 mm, regardless of the wave amplitude. The
argument is that, because of the way they are produced, the three-dimensional seeds
that evolved into resonance only became available close to the second branch of the
instability loop, that is, around x = 800 mm. Moreover, the mean flow distortion at
x = 1000 mm and beyond would be the nonlinear outcome of an already nonlinear
process. Clearly, it had to scale to a higher than second power of the wave amplitude,
in agreement with figure 18.

In conclusion, it can be said that the model that associated fundamental instability
with the effects related to the second branch of the stability loop was able to
predict with reasonable accuracy the spanwise wavenumber of the three-dimensional
structures of the second stage of the nonlinear regime. It also offered explanations
for the phase, the scaling power and the fixed streamwise location of the onset of
the second nonlinear stage and was consistent with the deterministic character of the
experimental results. Based on these results, it was concluded that this was a plausible
model for the second stage of the nonlinear regime.

It is important to note that other studies of wavetrains emanating from point
sources (Stemmer et al. 1998), have not attributed any importance to either the
fundamental instability or the second branch of the instability loop. However, in
those studies, the disturbance amplitude was considerably higher than that used here,
and turbulence occurred well before the second branch.

6. Summary and final remarks
The paper reports on an investigation of the nonlinear evolution of a wavetrain

emanating from a point source in a boundary layer. It confirms previous studies in
that mean flow distortions in the form of longitudinal streaks play an important role
in the process. It appeared that the streaks arise from transient growth promoted
by streamwise vortices. The results suggested that the nonlinear regime under study
could be thought of as a two-stage process. A physical model was proposed for each
nonlinear stage.

In the first stage, the streaks displayed a relatively simple pattern, with a negative
central streak and one positive streak at each side of the centreline of the wavetrain.
The mean flow distortion scaled to the second power of the wave amplitude. For
this stage, a weakly nonlinear model was presented. The model involved a Reynolds-
stress interaction of the spanwise and the wall-normal velocity components which
was found to be dominant. It produced a pair of longitudinal vortices which are
known to promote the algebraic growth of streaks via the lift-up mechanism. The
spanwise wavenumber of the streaks in the first nonlinear stage was predicted well by
the model, which was also consistent with the scaling power observed experimentally.

In some aspects, this stage resembled the nonlinear regime of oblique transition.
However, the interaction involved not only a pair of oblique waves, but a large
number of waves, including a relatively large two-dimensional one. The interacting
waves do not have an identical phase speed and therefore dispersive effects can be
important. Because of these important differences, it is perhaps not appropriate to
regard this phenomenon as oblique transition.

In the second stage of the nonlinear regime, the negative central streak was split into
two, and new streaks were formed at the edges of the wavetrain. Here, the mean flow
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distortion scaled better to the third power of the wave amplitude. At the same time,
the oscillating part of the signal displayed a peak-and-valley structure. Comparison
with the linear stability calculations, also given in the paper, led to the conclusion
that this peak-and-valley structure was also the outcome of nonlinear activity. A
remarkable feature was that the position of the onset of the second nonlinear stage
was not affected by the amplitude of the wave.

Two weakly nonlinear models have been investigated in an attempt to describe the
experimental observations. They have not been able to predict many features of the
second nonlinear stage. In particular, the peak-and-valley structure of the oscillating
part of the signal and the fixed position of the onset of the second nonlinear stage
could not be explained and these models were discarded.

A secondary instability model was then considered. It linked the peak-and-valley
structure to a secondary instability of the fundamental type. PSE computations
revealed that the spanwise wavenumbers of the most unstable modes were in
reasonable agreement with the experiments. In the model, the streak structure of the
mean flow distortion of the second nonlinear stage was associated with a nonlinear
interaction similar to that of the first stage. The agreement in spanwise wavenumbers
was good and the scaling power was consistent.

The deterministic character of the streak pattern made it clear that the seeds
for the resonating oblique modes could not have come from the non-deterministic
background noise. On the other hand, they could not have come directly from the
excitation because this would not be consistent with the phase of both the peak-and-
valley and the streak structures. The explanation eventually suggested was that the
resonating seeds had arisen from spanwise variation of amplification rates, owing to
variation of the local displacement thickness Reynolds number. This variation was
caused by the mean flow distortion of the first stage of the nonlinear regime. Because
of the proximity to the second branch of the linear stability loop, three-dimensional
seeds thus generated would develop an amplitude valley on the centreline and peaks
off the centreline, which was in agreement with the experimental observations. The
argument also offered an explanation for the fixed location of the onset of the
second stage of the nonlinear regime, which in the current experiment was at about
x = 800 mm. Indeed, that is the region where the seeds would be produced by the
mechanism described above.

In conclusion, it can be said that the models proposed for the first and second
nonlinear stages were able to predict with reasonable accuracy the spanwise
wavenumbers of the three-dimensional structures. They were also consistent with
the scaling powers of the mean flow distortions observed experimentally. The model
proposed for the second nonlinear stage was consistent with the deterministic
character of the phenomenon investigated and offered an explanation to the phase
of both the peak-and-valley structure and the streak structure. It also offered a
explanation for the fixed streamwise position of the onset of the second nonlinear
stage.

It would be interesting to confirm these findings via some kind of numerical
simulation, but cannot be done with the parabolized stability approach used in this
study. The PSE model cannot handle the modulation of the amplification rates owing
to variation of Reynolds number across the span.

As reported by Klebanoff & Tidstrom (1959) and Klebanoff et al. (1962), early
experiments revealed that natural transition usually occurs shortly after the waves
cross the second branch of the stability loop. This may be linked to the arguments
presented here. Apart from natural transition, other complicated scenarios such as
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the wavepacket (Medeiros & Gaster, 1999a, b) and the interaction of a point source
wavetrain with the background noise (Gaster 1990) display features that have not
yet been entirely explained. Perhaps some of these features are linked to the current
results. Indeed, this seems to be the case for the wavepackets, and this possibility is
now being investigated (Medeiros 2001).

Studying the evolution of three-dimensional wavetrains with other frequencies
would provide a clearer picture of the role of the second branch. If the second branch
does play a role in natural transition in boundary layers, investigation of the evolution
of three-dimensional wavetrains in a parallel flow, such as the flat-plate Poiseuille
flow, could shed further light onto the phenomenon. Since there the transition evolves
at a constant Reynolds number, the proximity to the second branch can be used
as a control parameter and a clearer picture may emerge. This investigation is also
currently under way.

The wavetrain from a point source exhibited nonlinear behaviour that is
characteristic of transition driven by either two-dimensional or three-dimensional
waves. This is perhaps not surprising, since it is a three-dimensional wave system
dominated by waves of low spanwise wavenumber. In fact, the work on boundary-
layer transition has concentrated on the evolution of monochromatic plane wavetrains.
Underlying this approach, there was always the expectation that such studies would
afford an explanation for the more complicated scenario of natural transition. This
expectation has, at least partially, been fulfilled by the observation of growth of
subharmonic waves (Shaikh 1997) and the formation of streaks (Westin et al. 1994)
in natural transition. The current paper gives further confirmation of the usefulness
of this approach. It is expected that these results will help further work in natural
transition.

The author acknowledges the fruitful discussions with Dr M. Mendonça, who also
performed the PSE computations. Discussions with Professor M. Gaster, who provided
the Orr–Sommerfeld code, and Professor P. Monkewitz are also acknowledged.
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